EINSTEIN TENSOR OF ZERO IMPLIES A ZERO RICCI TENSOR

We wish to prove that \(G_{ij} = 0 \) if and only if \(R_{ij} = 0 \). The Einstein tensor is defined as

\[
G_{ij} \equiv R_{ij} - \frac{1}{2} g_{ij} R
\]

Clearly if the Ricci tensor \(R_{ij} = 0 \) then \(G_{ij} = 0 \) (since the curvature scalar is the contraction of the Ricci tensor: \(R = g_{ij} R^{ij} \)). To prove the converse, suppose \(G_{ij} = 0 \). Then we can multiply both sides by \(g_{ij} \) to get

\[
0 = g_{ij} R^{ij} - \frac{1}{2} g_{ij} g^{ij} R
\]

\[
= R - 2R
\]

\[
R = 0
\]

Since \(g_{ij} g^{ij} = 4 \). With \(G_{ij} = 0 \) and \(R = 0 \), \(1 \) tells us that \(R^{ij} = 0 \). QED.