ISOTHERMAL AND ISENTROPIC COMPRESSIBILITIES

Link to: [physicspages home page](#).
To leave a comment or report an error, please use the [auxiliary blog](#).
Post date: 24 Jun 2016

An expression similar to that relating the heat capacities can be derived to relate the isothermal and isentropic compressibilities \(\kappa_T \) and \(\kappa_S \), defined as

\[
\kappa_T \equiv -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_T
\]

\[
\kappa_S \equiv -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_S
\]

These quantities measure the fractional change in volume of a substance in response to a change in pressure. To obtain the relation between them, we use a method similar to that for heat capacities \(C_V \) and \(C_P \).

If we write \(S = S(P,T) \) then

\[
dS = \left(\frac{\partial S}{\partial P} \right)_T dP + \left(\frac{\partial S}{\partial T} \right)_P dT
\]

Also, starting with \(V = V(P,S) \) we have

\[
dV = \left(\frac{\partial V}{\partial P} \right)_S dP + \left(\frac{\partial V}{\partial S} \right)_P dS
\]

Substituting 3 into 4 we get

\[
dV = \left[\left(\frac{\partial V}{\partial S} \right)_P \left(\frac{\partial S}{\partial P} \right)_T + \left(\frac{\partial V}{\partial P} \right)_S \right] dP + \left(\frac{\partial V}{\partial T} \right)_P dT
\]

At constant temperature \(dT = 0 \) and we get

\[
\left(\frac{\partial V}{\partial P} \right)_T = \left(\frac{\partial V}{\partial S} \right)_P \left(\frac{\partial S}{\partial P} \right)_T + \left(\frac{\partial V}{\partial P} \right)_S
\]

\[
-V\kappa_T = \left(\frac{\partial V}{\partial S} \right)_P \left(\frac{\partial S}{\partial P} \right)_T - V\kappa_S
\]

From the Maxwell relation from the Gibbs energy
ISOTHERMAL AND ISENTROPIC COMPRESSIBILITIES

\[
\left(\frac{\partial S}{\partial P} \right)_T = -\left(\frac{\partial V}{\partial T} \right)_P
\]

(8)

Also, from the definition of the thermal expansion coefficient \(\beta \)

\[
\beta \equiv \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_P
\]

(9)

Combining these last two equations gives

\[-V \kappa_T = -\beta V \left(\frac{\partial V}{\partial S} \right)_P - V \kappa_S
\]

(10)

To get rid of the last partial derivative, we observe that the volume change \(dV \) due to a temperature change \(dT \) at constant pressure is

\[dV = \beta V \, dT \]

(11)

The entropy change due to an influx of heat \(dQ \) at constant pressure at temperature \(T \) is

\[dS = \frac{dQ}{T} = C_P \, dT \]

(12) \quad (13)

Dividing these two relations gives

\[\left(\frac{\partial V}{\partial S} \right)_P = \frac{TV \beta}{C_P}
\]

(14)

Inserting this into (10) and cancelling off a factor of \(-V\) gives the final result

\[\kappa_T = \kappa_S + \frac{TV \beta^2}{C_P}
\]

(15)

For an ideal gas, we can use this equation to work out \(\kappa_S \):
\[
\beta = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_P = \frac{Nk}{PV} = \frac{1}{T} \tag{16}
\]

\[
\kappa_T = -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_T = \frac{NkT}{P^2V} = \frac{1}{P} \tag{17}
\]

\[
C_P = C_V + Nk = Nk \left(1 + \frac{f}{2} \right) \tag{18}
\]

\[
\kappa_S = \frac{1}{P} - \frac{V}{NkT \left(1 + \frac{f}{2} \right)} \tag{19}
\]

\[
= \frac{1}{P} \frac{f}{(f+2)} \tag{20}
\]

where in the third line, we’ve used Schroeder’s equation 1.48, and \(f \) is the number of degrees of freedom of each gas molecule.

To check this, recall that for an isentropic (adiabatic) process in an ideal gas

\[
PV^\gamma = K \tag{22}
\]

\[
V = \left(\frac{K}{P} \right)^{1/\gamma} \tag{23}
\]

where \(\gamma = (f+2)/f \) and \(K \) is a constant. So

\[
\kappa_S = -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_S \tag{24}
\]

\[
= -\left(\frac{P}{K} \right)^{1/\gamma} \left(-\frac{1}{\gamma} \right) \left(\frac{K}{P} \right)^{1/\gamma} \frac{1}{P} \tag{25}
\]

\[
= \frac{1}{P^{\gamma}} = \frac{1}{P (f+2)} \tag{26}
\]

which is the same as \[21\] so equation \[15\] checks out for an ideal gas.

PINGBACKS

Pingback: Van der Waals fluid at the critical point