PROJECTION OPERATORS

Link to: physicspages home page.
To leave a comment or report an error, please use the auxiliary blog.
References: edX online course MIT 8.05.1x Week 4.
Chapter 6.
Post date: 27 Oct 2016

Continuing from our examination of orthonormal bases and the orthogonal complement in a vector space V, we can now look at the orthogonal projection, sometimes known in physics as a projection operator.

Suppose we have defined a subspace U of V and its orthogonal complement U^\perp, so that $V = U \oplus U^\perp$. We can define a linear operator P_U called the orthogonal projection operator. It has the property that, given any vector $v \in V$, it ’projects’ out the component of v that lies in U. That is, if we write

$$v = u + w$$

where $u \in U$ and $w \in U^\perp$, then

$$P_U v = u$$

An example of a projection operator is an operator in 3-d space that projects a vector onto the xy plane. Then the xy plane is the subspace U and the z axis is the orthogonal complement U^\perp.

From the definition of P_U we can list a few properties:

1. P_U is not surjective, that is, its range is smaller than the entire space V.
2. P_U is not injective, since it maps all vectors $u + w$ to u, for all $w \in U^\perp$. Thus it is a many-to-one mapping.
3. P_U is not invertible, since it is not injective.
4. Its null space is null $P_U = U^\perp$.
5. Once P_U is applied to any vector v, all subsequent applications of P_U have no effect. That is, once you’ve projected out the component of v that lies in U, all further projections into U just give the same result. In other words $P_U^n = P_U$ for all integers $n > 0$.
6. $|P_U v| \leq |v|$. This follows from the Pythagorean theorem, since u and w are orthogonal, so $|v|^2 = |u|^2 + |w|^2 \geq |u|^2 = |P_U v|^2$. Geometrically, a projection operator cannot increase the ‘length’ (norm) of a vector. This property relies on the fact that the projection is an
orthogonal projection. Other projections can increase the length of a vector (think of the shadow cast by a stick; if the surface onto which the shadow falls is nearly parallel to the direction of the incoming light, the shadow is much longer than the stick).

An explicit form for $P_U v$ can be obtained from the decomposition we had earlier:

$$v = \sum_{i=1}^{n} \langle e_i, v \rangle e_i + v - \sum_{i=1}^{n} \langle e_i, v \rangle e_i$$

From this,

$$P_U v = \sum_{i=1}^{n} \langle e_i, v \rangle e_i$$

From the definition, it seems reasonable that a vector space V can be decomposed into a direct sum of range P_U and null P_U. We can in fact prove this.

Theorem 1. P is an orthogonal projection within the vector space V if

$$V = \text{null } P \oplus \text{range } P$$

Proof. We can take the subspace $U = \text{range } P$. From our earlier theorem, we know that $V = U \oplus U^\perp$, so we need to show that $U^\perp = \text{null } P$. Since $Pw = 0$ for any $w \in U^\perp$, then $\text{null } P \subset U^\perp$, but are there vectors in U^\perp that are not in null P? Suppose there is such a vector $x \in U^\perp$ such that $Px \neq 0$. For such a vector, we can decompose it into $x = x' + x''$ where $x' \in \text{null } P$ and $x'' \in \text{range } P$, with $x'' \neq 0$ (since if $x'' = 0$, then x would be in null P, contrary to our assumption).

As $x \in U^\perp$, $\langle x, u \rangle = 0$ for all $u \in U = \text{range } P$. Therefore $\langle x, u \rangle = \langle x' + x'', u \rangle = \langle x', u \rangle + \langle x'', u \rangle = 0$. Since $x' \in \text{null } P$, $\langle x', u \rangle = 0$ (as $x' \in U^\perp$). Therefore we must have $\langle x'', u \rangle = 0$, implying that $x'' \in U^\perp$ also. Thus $x'' \in U$ and $x'' \in U^\perp$, but the only vector that can be in both a subspace and its orthogonal complement is 0, so $x'' = 0$, which contradicts our assumption above.

From property 5 above, we must have $P_U^2 = P_U$, which implies that the eigenvalues of P_U are 0 and 1. The eigenvectors belong to either the subspace U (for eigenvalue 1) or to the orthogonal complement U^\perp (for eigenvalue 0).

The orthonormal basis of a vector space V can be divided into two separate lists of vectors, with one list (e_1, \ldots, e_m) spanning the subspace U and
the other list \((f_1, \ldots, f_k)\) spanning \(U^\perp\). A matrix representation of \(P_U\) can be obtained by considering the action of \(P_U\) on each of the basis vectors from the two subspaces. We have

\[
P_U e_i = e_i \quad \quad \quad \quad (6)
\]
\[
P_U f_i = 0 \quad \quad \quad \quad (7)
\]

In general, the matrix representation of an operator \(T\) is defined in terms of its action on the basis vectors \(v_i\) by

\[
v'_j = \sum_{i=1}^n T_{ij} v_i
\]

For a projection operator, we can see that this means that for the \(m\) basis vectors \((e_1, \ldots, e_m)\) we must have \(P_{ij} = \delta_{ij}\) for all \(i, j = 1, \ldots, m\), while for the \(k\) basis vectors \((f_1, \ldots, f_k)\) we must have \(P_{ij} = 0\) for all \(i, j = 1, \ldots, k\). If we list the basis vectors in the order \((e_1, \ldots, e_m, f_1, \ldots, f_k)\), then \(P_U\) is a \((m+k) \times (m+k)\) diagonal matrix with the diagonal elements in the top \(m\) rows equal to 1, and all other elements equal to zero.

In this basis, we see that \(\det P_U = 0\) (because there is at least one zero element on the diagonal) and \(\text{tr} P_U = m\), which is the dimension of the subspace \(U\). As the trace and determinant are invariant under a change of basis, these properties apply to any basis.

Pingbacks

- Density matrix
- Projection operators for spin-1/2 + spin-1/2
- Projection operators for general L + spin-1/2
- Energy projection operators in the Dirac equation