ROTATIONS THROUGH A FINITE ANGLE; USE OF POLAR COORDINATES

Link to: physicspages home page.
To leave a comment or report an error, please use the auxiliary blog.
Chapter 12, Exercise 12.2.3.
Post date: 20 Apr 2017

The angular momentum operator L_z is the generator of rotations in the xy plane. We did the derivation for infinitesimal rotations, but we can generalize this to finite rotations in a similar manner to that used for translations.

The unitary transformation for an infinitesimal rotation is

$$U[R(\varepsilon z \hat{z})] = I - \frac{i\varepsilon z L_z}{\hbar} \tag{1}$$

For rotation through a finite angle ϕ_0, we divide up the angle into N small angles, so $\varepsilon z = \phi_0 / N$. Rotation through the full angle ϕ_0 is then given by

$$U[R(\phi_0 \hat{z})] = \lim_{N \to \infty} \left(I - \frac{i\phi_0 L_z}{N\hbar} \right)^N = e^{-i\phi_0 L_z / \hbar} \tag{2}$$

The limit follows because the only non-trivial operator involved is L_z, so no commutation problems arise.

In rectangular coordinates, L_z has the relatively non-obvious form

$$L_z = X P_y - Y P_x \tag{3}$$

$$= -i\hbar \left(x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x} \right) \tag{4}$$

so it’s not immediately clear that 2 does in fact lead to the desired rotation. Trying to calculate the exponential with L_z expressed this way is not easy, given that the two terms $x \frac{\partial}{\partial y}$ and $y \frac{\partial}{\partial x}$ don’t commute.

It turns out that L_z has a much simpler form in polar coordinates, and there are two ways of converting it to polar form. First, we recall the transformation equations.
\[x = \rho \cos \phi \]
\[y = \rho \sin \phi \]
\[\rho = \sqrt{x^2 + y^2} \]
\[\phi = \tan^{-1} \frac{y}{x} \]

From the chain rule, we can convert the derivatives:

\[\frac{\partial}{\partial x} = \frac{\partial \rho}{\partial x} \frac{\partial}{\partial \rho} + \frac{\partial \cos \phi}{\partial x} \frac{\partial}{\partial (\cos \phi)} \]
\[= \frac{\partial \rho}{\partial x} - \sin \phi \frac{\partial \phi}{\partial x} \left(-\sin \phi \right) \frac{\partial}{\partial \phi} \]
\[= \frac{x}{\rho} \frac{\partial}{\partial \rho} - \frac{y}{\rho^2} \frac{\partial}{\partial \phi} \]

Using similar methods, we get for the other derivative

\[\frac{\partial}{\partial y} = \frac{\partial \rho}{\partial y} \frac{\partial}{\partial \rho} + \frac{\partial \sin \phi}{\partial y} \frac{\partial}{\partial (\sin \phi)} \]
\[= \frac{y}{\rho} \frac{\partial}{\partial \rho} + \frac{x}{\rho^2} \frac{\partial}{\partial \phi} \]

Plugging these into (4) we have

\[L_z = -i \hbar \left[x \left(\frac{y}{\rho} \frac{\partial}{\partial \rho} + \frac{x}{\rho^2} \frac{\partial}{\partial \phi} \right) - y \left(\frac{x}{\rho} \frac{\partial}{\partial \rho} - \frac{y}{\rho^2} \frac{\partial}{\partial \phi} \right) \right] \]
\[= -i \hbar \frac{x^2 + y^2}{\rho^2} \frac{\partial}{\partial \phi} \]
\[= -i \hbar \frac{\partial}{\partial \phi} \]

Another method of converting \(L_z \) to polar coordinates is to consider the effect of \(U[R] \) for an infinitesimal rotation \(\varepsilon_z \) on a state vector expressed in polar coordinates \(\psi(\rho, \phi) \). Shankar states that

\[\langle \rho, \phi | U[R] | \psi(\rho, \phi) \rangle = \psi(\rho, \phi - \varepsilon_z) \]
If you don’t believe this, it can be shown using a method similar to that for the one-dimensional translation. In this case, we’re dealing with position eigenkets in polar coordinates, so we have

$$U[R] \vert \rho, \phi \rangle = \vert \rho, \phi + \varepsilon_z \rangle$$ \hspace{1cm} (19)

Applying this, we get

$$\vert \psi_{\varepsilon_z} \rangle = U[R] \vert \psi \rangle$$ \hspace{1cm} (20)

$$= U[R] \int_0^{2\pi} \int_0^\infty \langle \rho, \phi \vert \rho, \phi \rangle \rho d\rho d\phi$$ \hspace{1cm} (21)

$$= \int_0^{2\pi} \int_0^\infty \vert \rho, \phi + \varepsilon_z \rangle \langle \rho, \phi \vert \rho, \phi \rangle \rho d\rho d\phi$$ \hspace{1cm} (22)

$$= \int_0^{2\pi} \int_0^\infty \vert \rho', \phi' \rangle \langle \rho', \phi' - \varepsilon_z \vert \rho' d\rho' d\phi'$$ \hspace{1cm} (23)

where in the last line, we used the substitution $\phi' = \phi + \varepsilon_z$. (The substitution $\rho' = \rho$ is used just to give the radial variable a different name in the integrand.) We can use the same limits of integration for ϕ and ϕ', since we just need to ensure that the integral covers the total range of angles. It then follows that

$$\langle \rho, \phi \vert \psi_{\varepsilon_z} \rangle = \int_0^{2\pi} \int_0^\infty \delta (\rho - \rho') \delta (\phi - \phi') \langle \rho', \phi' - \varepsilon_z \vert \rho' d\rho' d\phi'$$ \hspace{1cm} (24)

$$= \psi (\rho, \phi - \varepsilon_z)$$ \hspace{1cm} (25)

Combining this with 1 we have

$$\langle \rho, \phi \vert I - \frac{i\varepsilon_z L_z}{\hbar} \vert \psi \rangle = \psi (\rho, \phi - \varepsilon_z)$$ \hspace{1cm} (27)

Expanding the RHS to order ε_z we have

$$\langle \rho, \phi \vert I - \frac{i\varepsilon_z L_z}{\hbar} \vert \psi \rangle = \psi (\rho, \phi) - \varepsilon_z \frac{\partial \psi}{\partial \phi}$$ \hspace{1cm} (28)

from which 17 follows again.

Once we have L_z in this form, the exponential form of a finite rotation is easier to interpret, for we have, from 2
\[e^{-i \phi_0 L_z / \hbar} = \exp \left[-\phi_0 \frac{\partial}{\partial \phi} \right] \]

\[= 1 - \phi_0 \frac{\partial}{\partial \phi} + \frac{\phi_0^2}{2!} \frac{\partial^2}{\partial \phi^2} + \ldots \]

(29)

(30)

Applying this to a state function \(\psi(\rho, \phi) \), we see that we get the Taylor series for \(\psi(\rho, \phi - \phi_0) \), so the exponential does indeed represent a rotation through a finite angle.