COUPLING OF PROTON’S MAGNETIC MOMENT TO EXTERNAL FIELD

We’ve dealt with the Zeeman effect in a lot of detail before, but Shankar deals with it using the approximation of neglecting the coupling of the proton’s magnetic moment to the external magnetic field B. Using classical arguments, we can see why this is a reasonable approximation.

The proton, like the electron, has both orbital and spin angular momentum. The proton’s spin is $\frac{h}{2}$, the same as the electron, so its spin magnetic moment is given by

$$\mu_{ps} = \frac{q}{2M} \frac{\hbar}{c}$$ \hspace{1cm} (1)

where M is the proton’s mass. Since (apart from the sign) the proton and electron have the same charge q and spin, the equivalent formula for the electron is

$$\mu_{es} = \frac{q}{2m} \frac{\hbar}{c}$$ \hspace{1cm} (2)

where m is the electron mass. Thus

$$\mu_{ps} = \frac{m}{M} \mu_{es}$$ \hspace{1cm} (3)

so that the proton’s spin magnetic moment is about $\frac{1}{1836}$ times that of the electron.

For the orbital magnetic moment, we can consider a classical system in which the electron and proton are orbiting about their centre of mass. The period T of the orbit is the same for both particles, and the radius of each orbit is
COUPLING OF PROTON’S MAGNETIC MOMENT TO EXTERNAL FIELD

\[r_p = \frac{m}{m + M} r \approx \frac{m}{M} r \]\((4) \)

\[r_e = \frac{M}{m + M} r \approx r \]\((5) \)

where \(r \) is the distance between the two particles. The orbital magnetic moment can be written as

\[\mu_i = \frac{qv_i r_i}{2c} \]\((6) \)

where the subscript \(i \) is either \(e \) or \(p \). Since the proton moves in a smaller orbit but at the same frequency as the electron, its velocity is smaller. We have

\[v_p = \frac{2\pi r_p}{T} = \frac{2\pi r}{T} \frac{m}{m + M} \approx \frac{2\pi r}{T} \frac{m}{M} \]\((7) \)

\[v_e = \frac{2\pi r_e}{T} = \frac{2\pi r}{T} \frac{M}{m + M} \approx \frac{2\pi r}{T} \]\((8) \)

Therefore

\[\mu_p \approx \frac{\pi q r^2}{cT} \left(\frac{m}{M} \right)^2 \]\((9) \)

\[\mu_e \approx \frac{\pi q r^2}{cT} \]\((10) \)

Thus the orbital magnetic moment of the proton is about \(\left(\frac{m}{M} \right)^2 \) times that of the electron.

PINGBACKS
Pingback: Stern-gerlach experiment
Pingback: Hyperfine interaction in hydrogen - a rough calculation