PROJECTION OPERATORS FOR SPIN-1/2 + SPIN-1/2

We've seen projection operators in a formal mathematical sense, but in this post, we'll see a practical example of projection operators in spin space. We look at a system of two spin-$\frac{1}{2}$ particles, with spin operators S_1 and S_2 for each of the two particles. Now consider the operators

$$P_1 = \frac{3}{4}I + \frac{1}{\hbar^2}S_1 \cdot S_2$$

$$P_2 = \frac{1}{4}I - \frac{1}{\hbar^2}S_1 \cdot S_2$$

A projection operator projects an arbitrary vector onto a subspace of the vector space in which that vector resides. The two projection operators here project onto orthogonal subspaces, which means if we project some vector V first with P_1 and then with P_2 (or vice versa), we'll end up with the zero vector. Also, if we project V twice (or more) with the same projection operator, all projections after the first have no further effect. That is

$$P_i P_j = \delta_{ij} P_j$$

To show that this is true for the two projection operators above, we can make use of an identity derived earlier:

$$(\mathbf{A} \cdot \sigma)(\mathbf{B} \cdot \sigma) = (\mathbf{A} \cdot \mathbf{B})I + i(\mathbf{A} \times \mathbf{B}) \cdot \sigma$$

which is valid if \mathbf{A} and \mathbf{B} commute with σ.

Here \mathbf{A} and \mathbf{B} are vector operators that commute with the Pauli matrices σ.

First, we'll look at $P_1 P_2$:

\[\cdots \]
\[P_1 P_2 = \left[\frac{3}{4} I + \frac{1}{\hbar^2} S_1 \cdot S_2 \right] \left[\frac{1}{4} I - \frac{1}{\hbar^2} S_1 \cdot S_2 \right] \]

\[= \left[\frac{3}{4} I + \frac{1}{4} \sigma_1 \cdot \sigma_2 \right] \left[\frac{1}{4} I - \frac{1}{4} \sigma_1 \cdot \sigma_2 \right] \]

\[= \frac{3}{16} I - \frac{2}{16} \sigma_1 \cdot \sigma_2 - \frac{1}{16} (\sigma_1 \cdot \sigma_2)^2 \]

(5)

(6)

(7)

We can write the last term as

\[(\sigma_1 \cdot \sigma_2)^2 = (\sigma_1 \cdot \sigma_2)(\sigma_1 \cdot \sigma_2) \]

(8)

We see that this has the same form as (4) with \(A = B = \sigma_1 \) and \(\sigma = \sigma_2 \). Since \(\sigma_1 \) and \(\sigma_2 \) refer to different spins, they commute, so the identity is valid. We get

\[(\sigma_1 \cdot \sigma_2)^2 = \sigma_1 \cdot \sigma_1 I + i (\sigma_1 \times \sigma_1) \cdot \sigma_2 \]

(9)

The first term is (using the fact that the square of each Pauli matrix is \(I \)):

\[\sigma_1 \cdot \sigma_1 I = (\sigma_{x_1}^2 + \sigma_{y_1}^2 + \sigma_{z_1}^2) I \]

(10)

\[= 3 I^2 \]

(11)

\[= 3 I \]

(12)

The cross product is just a shorthand way of writing the commutation relations. To see this, work out the \(x \) component, for example:

\[(\sigma_1 \times \sigma_1)_x = \sigma_{y_1} \sigma_{z_1} - \sigma_{z_1} \sigma_{y_1} = 2i \sigma_{x_1} \]

(13)

We can write this as

\[(\sigma_1 \times \sigma_1) = i \sigma_1 \]

(14)

Plugging this into (9) we have

\[(\sigma_1 \cdot \sigma_2)^2 = 3 I - 2 \sigma_1 \cdot \sigma_2 \]

(15)

This gives, from (7)

\[P_1 P_2 = \frac{3}{16} I - \frac{2}{16} \sigma_1 \cdot \sigma_2 - \frac{3}{16} I + \frac{2}{16} \sigma_1 \cdot \sigma_2 = 0 \]

(16)

A similar calculation shows that

\[P_2 P_1 = 0 \]

(17)

We can also calculate
PROJECTION OPERATORS FOR SPIN-1/2 + SPIN-1/2

\[P_1 P_1 = \left[\frac{3}{4} I + \frac{1}{h^2} S_1 \cdot S_2 \right] \left[\frac{3}{4} I + \frac{1}{h^2} S_1 \cdot S_2 \right] \]
\[= \left[\frac{3}{4} I + \frac{1}{4} \sigma_1 \cdot \sigma_2 \right] \left[\frac{3}{4} I + \frac{1}{4} \sigma_1 \cdot \sigma_2 \right] \]
\[= \frac{9}{16} I + \frac{6}{16} \sigma_1 \cdot \sigma_2 + \frac{1}{16} (\sigma_1 \cdot \sigma_2)^2 \]
\[= \frac{12}{16} I + \frac{4}{16} \sigma_1 \cdot \sigma_2 \]
\[= \frac{3}{4} I + \frac{1}{4} \sigma_1 \cdot \sigma_2 \]
\[= P_1 \]

(18)

(19)

(20)

(21)

(22)

(23)

A similar calculation shows that

\[P_2 P_2 = P_2 \]

(24)

To find the subspace to which each projection operator projects, we can use the explicit matrix forms in the product basis for the projections. We have

\[P_1 = \frac{3}{4} I + \frac{1}{h^2} S_1 \cdot S_2 \]
\[= \frac{3}{4} I + \frac{1}{h^2} \left(\frac{1}{2} S_{1+} S_{2-} + \frac{1}{2} S_{1-} S_{2+} + S_{1z} S_{2z} \right) \]
\[= \frac{3}{4} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} + \]
\[\frac{1}{2} \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} + \frac{1}{4} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \]

(25)

(26)

(27)

(28)

(29)

Similarly
\[P_2 = \frac{1}{4} I - \frac{1}{\hbar^2} S_1 \cdot S_2 \]
\[= \frac{3}{4} I - \frac{1}{\hbar^2} \left(\frac{1}{2} S_{1+} S_{2-} + \frac{1}{2} S_{1-} S_{2+} + S_{1z} S_{2z} \right) \]
\[= \frac{1}{4} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} - \frac{1}{2} \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} - \frac{1}{2} \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \]
\[= \frac{1}{4} \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & \frac{1}{2} & -\frac{1}{2} & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \]
\[\frac{1}{2} \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & \frac{1}{2} & -\frac{1}{2} & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \]
\[= \begin{bmatrix} 0 & \frac{1}{2} (b+c) & 0 \\ 0 & \frac{1}{2} (b+c) & 0 \\ 0 & 0 & d \end{bmatrix} \]
\[= a \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + \frac{1}{\sqrt{2}} (b+c) \begin{bmatrix} 0 \\ \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} + d \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \]

Thus \(P_1 \) projects \(V \) into the subspace spanned by the basis vectors of the 3-dimensional spin-1 subspace.

For \(P_2 \) we have
\[P_2 V = P_2 \begin{bmatrix} a & b & c & d \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & \frac{1}{2} & -\frac{1}{2} & 0 \\ 0 & -\frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} \] (38)

\[= \frac{1}{2} \begin{bmatrix} 0 \\ -b + c \\ b - c \end{bmatrix} \] (39)

\[= \frac{1}{\sqrt{2}} (b - c) \begin{bmatrix} 0 \\ -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0 \end{bmatrix} \] (40)

Thus \(P_2 \) projects onto the 1-dimensional spin-0 subspace.

In the total-\(j \) basis

\[S^2 = (S_1 + S_2)^2 = S_1^2 + S_2^2 + 2S_1 \cdot S_2 \] (41)

\[S_1 \cdot S_2 = \frac{1}{2} (S^2 - S_1^2 - S_2^2) \] (42)

In both the spin-1 and spin-0 states, the eigenvalues of \(S_1^2 \) and \(S_2^2 \) are equal to \(s_1 (s_1 + 1) \hbar^2 = \frac{3}{4} \). For spin-1, \(s = 1 \) and for the three basis states with \(m = \pm 1, 0 \), we have, since all operators are diagonal in this space:

\[(S_1 \cdot S_2) |s = 1, m = \pm 1, 0\rangle = \frac{1}{2} (S^2 - S_1^2 - S_2^2) |s = 1, m = \pm 1, 0\rangle \] (43)

\[= \frac{\hbar^2}{2} \left(s (s + 1) - \frac{3}{2} \right) I |s = 1, m = \pm 1, 0\rangle \] (44)

\[= \frac{\hbar^2}{4} |s = 1, m = \pm 1, 0\rangle \] (45)

For the spin-0 state, there is only one basis state with \(m = 0 \), so
\[(S_1 \cdot S_2) |s = 0, m = 0\rangle = \frac{1}{2} (S_1^2 - S_2^2 - S_2^2) |s = 0, m = 0\rangle \]
\[= \frac{\hbar^2}{2} \left(s(s + 1) - \frac{3}{2} \right) |s = 0, m = 0\rangle \]
\[= -\frac{3\hbar^2}{4} |s = 0, m = 0\rangle \]

Therefore, on any spin-1 state, we have

\[\mathbb{P}_1 |s = 1, m = \pm 1, 0\rangle = \left(\frac{3}{4} I + \frac{1}{\hbar^2} S_1 \cdot S_2 \right) |s = 1, m = \pm 1, 0\rangle \]
\[= \left(\frac{3}{4} + \frac{1}{4} \right) I |s = 1, m = \pm 1, 0\rangle \]
\[= |s = 1, m = \pm 1, 0\rangle \]
\[\mathbb{P}_2 |s = 1, m = \pm 1, 0\rangle = \left(\frac{1}{4} I - \frac{1}{\hbar^2} S_1 \cdot S_2 \right) |s = 1, m = \pm 1, 0\rangle \]
\[= \left(\frac{1}{4} - \frac{1}{4} \right) I |s = 1, m = \pm 1, 0\rangle \]
\[= 0 \]

On the spin-0 state

\[\mathbb{P}_1 |s = 0, m = 0\rangle = \left(\frac{3}{4} I + \frac{1}{\hbar^2} S_1 \cdot S_2 \right) |s = 0, m = 0\rangle \]
\[= \left(\frac{3}{4} - \frac{3}{4} \right) I |s = 0, m = 0\rangle \]
\[= 0 \]
\[\mathbb{P}_2 |s = 0, m = 0\rangle = \left(\frac{1}{4} I - \frac{1}{\hbar^2} S_1 \cdot S_2 \right) |s = 0, m = 0\rangle \]
\[= \left(\frac{1}{4} + \frac{3}{4} \right) I |s = 0, m = 0\rangle \]
\[= |s = 0, m = 0\rangle \]

Since the four kets \(|s = 1, m = \pm 1, 0\rangle\) and \(|s = 0, m = 0\rangle\) form a basis in the total-j space, any state can be written as a linear combination of them, and thus the projection operator \(\mathbb{P}_1\) projects an arbitrary vector onto the \(|s = 1, m = \pm 1, 0\rangle\) subspace and \(\mathbb{P}_2\) onto the \(|s = 0, m = 0\rangle\) subspace.
PINGBACKS

Pingback: Projection operators for general L + spin-1/2