The Gaussian integral can be used to define averages of powers of the integration variable \(x \). The average is defined as

\[
\langle x^{2n} \rangle \equiv \frac{\int_{-\infty}^{\infty} dx e^{-ax^2/2} x^{2n}}{\int_{-\infty}^{\infty} dx e^{-ax^2/2}}
\]

We look only at even powers of \(x \) since the average of all odd powers is zero, as the integrand is odd. Rather than working out all the integrals, we can actually find \(\langle x^{2n} \rangle \) by differentiating the original Gaussian integral with respect to the parameter \(a \). We have

\[
G = \int_{-\infty}^{\infty} dx e^{-ax^2/2}
\]

\[
= \sqrt{\frac{2\pi}{a}}
\]

\[
-2 \frac{dG}{da} = \int_{-\infty}^{\infty} dx e^{-ax^2/2} x^2
\]

\[
= \sqrt{2\pi} \frac{1}{a^{3/2}}
\]

\[
(-2)^2 \frac{d^2 G}{da^2} = \int_{-\infty}^{\infty} dx e^{-ax^2/2} x^4
\]

\[
= \sqrt{2\pi} \frac{3}{a^{5/2}}
\]

\[
(-2)^n \frac{d^n G}{da^n} = \sqrt{2\pi} \frac{(2n-1)!!}{a^{(2n+1)/2}}
\]

where the double factorial is defined as

\[
(2n-1)!! \equiv (2n-1)(2n-3)\ldots3\times1
\]
Putting this result into \(2\) we get

\[
\langle x^{2n} \rangle = \frac{(2n - 1)!!}{a^n} \tag{11}
\]

We can also get this result from the variant Gaussian integral, obtained by completing the square in the exponent:

\[
\int_{-\infty}^{\infty} dx e^{-ax^2/2 + Jx} = \sqrt{\frac{2\pi}{a}} e^{J^2/2a} \tag{12}
\]

If we take the derivative of the LHS with respect to \(J\) we get

\[
\frac{d^{2n}}{dJ^{2n}} \int_{-\infty}^{\infty} dx e^{-ax^2/2 + Jx} = \int_{-\infty}^{\infty} dx e^{-ax^2/2 + Jx} x^{2n} \tag{13}
\]

Setting \(J = 0\) and comparing with \(2\) gives us

\[
\langle x^{2n} \rangle = \left. \frac{d^{2n}}{dJ^{2n}} e^{J^2/2a} \right|_{J=0} \tag{14}
\]

Although I could leave things here, I decided that it would be interesting to prove that the RHS actually does give \(\langle x^{2n} \rangle\). This proved to be a bit trickier than I expected, but the derivation is interesting so I’ll give it here.

We need to find a general expression for \(\frac{d^{2n}}{dJ^{2n}} e^{J^2/2a}\) before setting \(J = 0\). To help with this, we can write out the derivative explicitly for the first few values of \(n\). It’s actually easier to do the work for \(a = 1\); using dimensional analysis it’s easy enough to put \(a\) back in at the end. We find

<table>
<thead>
<tr>
<th>(n)</th>
<th>(\frac{d^n}{dJ^n} e^{J^2/2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(e^{J^2/2} \left[1 + J^2 \right])</td>
</tr>
<tr>
<td>2</td>
<td>(e^{J^2/2} \left[3 + 6J^2 + J^4 \right])</td>
</tr>
<tr>
<td>3</td>
<td>(e^{J^2/2} \left[15 + 45J^2 + 15J^4 + J^6 \right])</td>
</tr>
<tr>
<td>4</td>
<td>(e^{J^2/2} \left[105 + 420J^2 + 210J^4 + 28J^6 + J^8 \right])</td>
</tr>
<tr>
<td>5</td>
<td>(e^{J^2/2} \left[945 + 4725J^2 + 3150J^4 + 630J^6 + 45J^8 + J^{10} \right])</td>
</tr>
</tbody>
</table>

We see that the constant term in each case is indeed equal to \((2n - 1)!!\). The coefficient of the second highest power of \(J\) is \((2n - 1) n\). Working backwards in each line, we find that the coefficient of the third highest power is \(\frac{1}{3} (2n - 1) (2n - 3) n (n - 1)\), of the fourth highest power is \(\frac{1}{3 \times 2} (2n - 1) (2n - 3) (2n - 5) n (n - 1) (n - 2)\) and so on. In general, the coefficient of \(J^{2n-2m}\) is

\[
\frac{n!}{m! (n-m)! (2n-2m-1)!!} \frac{(2n - 1)!!}{(2n-2m-1)!!} = \binom{n}{m} \frac{(2n - 1)!!}{(2n-2m-1)!!} \tag{15}
\]
Therefore we propose that

\[
\frac{d^{2n}}{dJ^{2n}} e^{J^2/2} = e^{J^2/2} \sum_{m=0}^{n} \binom{n}{m} \frac{(2n-1)!!}{(2n-2m-1)!!} J^{2n-2m} \quad (16)
\]

We can prove this in general using induction. We’ve already established the anchor step, since this formula is true for \(n = 1 \ldots 5 \), so we can assume it for some value \(n \) and then work from there to prove it’s true for \(n + 1 \). That is, we want to show, starting from (16), that the following is true:

\[
\frac{d^{2n+2}}{dJ^{2n+2}} e^{J^2/2} = e^{J^2/2} \sum_{m=0}^{n+1} \binom{n+1}{m} \frac{(2n+1)!!}{(2n-2m+1)!!} J^{2n-2m+2} \quad (17)
\]

We need to take the derivative of (16) twice. We get

\[
\frac{d^{2n+1}}{dJ^{2n+1}} e^{J^2/2} = e^{J^2/2} \sum_{m=0}^{n} \binom{n}{m} \frac{(2n-1)!!}{(2n-2m-1)!!} \left[J^{2n-2m+1} + (2n-2m) J^{2n-2m-1} \right] \quad (18)
\]

\[
\frac{d^{2n+2}}{dJ^{2n+2}} e^{J^2/2} = e^{J^2/2} \sum_{m=0}^{n} \binom{n}{m} \frac{(2n-1)!!}{(2n-2m-1)!!} \times \left[J^{2n-2m+2} + (4n-4m+1) J^{2n-2m} + (2n-2m)(2n-2m-1) J^{2n-2m-2} \right] \quad (19)
\]

We’d like to put this in the form (17) so we can shift the summation index from \(m \to m-1 \) in the second term, and from \(m \to m-2 \) in the third term, thus allowing us to factor out \(J^{2n-2m+2} \) from all 3 terms. The limits on the sums will also change, so the second term now has limits of \(m = 1 \ldots n + 1 \) and the third term of \(m = 2 \ldots n + 2 \). We get (putting the exponential on the LHS for convenience):

\[
e^{-J^2/2} \frac{d^{2n+2}}{dJ^{2n+2}} e^{J^2/2} = \sum_{m=0}^{n} \binom{n}{m} \frac{(2n-1)!!}{(2n-2m-1)!!} J^{2n-2m+2} + \\
\sum_{m=1}^{n+1} \binom{n}{m-1} \frac{(2n-1)!!}{(2n-2m+1)!!} (4n-4m+5) J^{2n-2m+2} + \\
\sum_{m=2}^{n+2} \binom{n}{m-2} \frac{(2n-1)!!}{(2n-2m+3)!!} (2n-2m+4) (2n-2m+3) J^{2n-2m+2} \quad (20)
\]

We can condense the sums by using the fact that the binomial coefficient \(\binom{p}{q} \) is zero if \(q < 0 \) or \(q > p \), so we can extend the lower limits on the second
and third sums to 0, and extend the upper limit on the first sum to \(n + 1 \). Also, in the third sum, the factor \((2n - 2m + 4)\) is zero when \(m = n + 2 \), so we can reduce the upper limit on the sum to \(n + 1 \). Therefore all three sums extend from \(m = 0 \) to \(n + 1 \) and we have (cancelling the common factor in the third sum as well):

\[
e^{-J^2/2} \frac{d^{2n+2}}{dJ^{2n+2}} e^{J^2/2} = \sum_{m=0}^{n+1} \binom{n}{m} \frac{(2n-1)!!}{(2n-2m-1)!!} J^{2n-2m+2} + \\
\sum_{m=0}^{n+1} \binom{n}{m-1} \frac{(2n-1)!!}{(2n-2m+1)!!} (4n-4m+5) J^{2n-2m+2} + \\
\sum_{m=0}^{n+1} \binom{n}{m-2} \frac{(2n-1)!!}{(2n-2m+1)!!} (2n-2m+4) J^{2n-2m+2}
\]

(21)

To convert the binomial coefficients, we have

\[
\binom{n}{m-2} = \frac{m-1}{n-m+2} \binom{n}{m-1}
\]

(22)

This allows us to combine the second and third sums:

\[
e^{-J^2/2} \frac{d^{2n+2}}{dJ^{2n+2}} e^{J^2/2} = \sum_{m=0}^{n+1} \binom{n}{m} \frac{(2n-1)!!}{(2n-2m-1)!!} J^{2n-2m+2} + \\
\sum_{m=0}^{n+1} \binom{n}{m-1} \frac{(2n-1)!!}{(2n-2m+1)!!} (4n-2m+3) J^{2n-2m+2}
\]

(23)

Also

\[
\binom{n}{m-1} = \frac{m}{n-m+1} \binom{n}{m}
\]

(24)

Using this, and multiplying the first sum by \(\frac{2n-2m+1}{2n-2m+1} \) we can combine it with the second sum to get

\[
e^{-J^2/2} \frac{d^{2n+2}}{dJ^{2n+2}} e^{J^2/2} = \sum_{m=0}^{n+1} \binom{n}{m} \frac{(2n-1)!!}{(2n-2m+1)!!} \left(2n-2m+1 + \frac{m(4n-2m+3)}{n-m+1} \right) J^{2n-2m+2}
\]

(25)

Finally, we have
\[
\binom{n}{m} = \frac{n - m + 1}{n + 1} \binom{n + 1}{m} \tag{26}
\]

Plugging this in and simplifying, we get

\[
\left(2n - 2m + 1 + \frac{m(4n - 2m + 3)}{n - m + 1}\right) \binom{n}{m} = \left(2n - 2m + 1 + \frac{m(4n - 2m + 3)}{n - m + 1}\right) \frac{n - m + 1}{n + 1} \binom{n + 1}{m} \tag{27}
\]

\[
= (2n + 1) \binom{n + 1}{m} \tag{28}
\]

\[
e^{-J^2/2} \frac{d^{2n+2}}{dJ^{2n+2}} e^{J^2/2} = \sum_{m=0}^{n+1} \binom{n + 1}{m} \frac{(2n + 1)!!}{(2n - 2m + 1)!!} J^{2n-2m+2} \tag{29}
\]

QED.

To restore the factors of \(a\), we observe that \(J^2\) has the same dimensions as \(a\) (since an exponent must be dimensionless), so the derivative \(\frac{d^{2n}}{dJ^{2n}}\) has the dimensions of \(a^{-n}\). Therefore, the term involving \(J^{2n-2m}\) must be divided by \(a^{2n-m}\). Thus:

\[
\frac{d^{2n}}{dJ^{2n}} e^{J^2/2a} = e^{J^2/2a} \sum_{m=0}^{n} \binom{n}{m} \frac{(2n - 1)!!}{(2n - 2m - 1)!!} J^{2n-2m} \tag{30}
\]

When \(J = 0\), this reduces to the \(m = n\) term, which is (the double factorial \((-1)!! = 1\), at least according to Maple):

\[
\left. \frac{d^{2n}}{dJ^{2n}} e^{J^2/2a} \right|_{J=0} = \frac{(2n-1)!!}{a^n} \tag{31}
\]

which is the same as \(11\).

Pingbacks

Pingback: Gaussian integrals: averages over matrix components and the Wick contraction