GAUSSIAN INTEGRALS: AVERAGES OVER MATRIX COMPONENTS AND THE WICK CONTRACTION

We’ve seen how to evaluate a Gaussian integral with matrices in the exponent:

\[
\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} dx_1 dx_2 \cdots dx_N e^{-\frac{1}{2} x^T A x + J^T x} = \sqrt{\frac{(2\pi)^N}{\det A}} e^{\frac{1}{2} J^T A^{-1} J} \tag{1}
\]

Using this formula, we can generalize the definition of averages of powers of \(x\) in the single variable integral. That is, we would like to calculate

\[
\langle x_i x_j \ldots x_k x_\ell \rangle \equiv \frac{\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} dx_1 dx_2 \cdots dx_N x_i x_j \ldots x_k x_\ell e^{-\frac{1}{2} x^T A x} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} dx_1 dx_2 \ldots dx_N e^{-\frac{1}{2} x^T A x}}{\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} dx_1 dx_2 \cdots dx_N e^{-\frac{1}{2} x^T A x}} \tag{2}
\]

From the LHS of (1) we see that this average can be obtained by taking the derivative with respect to \(J_a\) for each subscript \(a\) in the set of \(x_a\)s that we want to average, and then setting \(J = 0\). For example, since \(J^T x = \sum_a x_a J_a\),

\[
\frac{\partial^2}{\partial J_i \partial J_j} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} dx_1 dx_2 \cdots dx_N e^{-\frac{1}{2} x^T A x + J^T x} = \frac{\partial^2}{\partial J_i \partial J_j} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} dx_1 dx_2 \cdots dx_N x_i x_j e^{-\frac{1}{2} x^T A x + J^T x} \tag{3}
\]

Therefore

\[
\langle x_i x_j \rangle = \frac{\frac{\partial^2}{\partial J_i \partial J_j} \left(\sqrt{\frac{(2\pi)^N}{\det A}} e^{\frac{1}{2} J^T A^{-1} J} \right) \bigg|_{J=0}}{\sqrt{\frac{(2\pi)^N}{\det A}} e^{\frac{1}{2} J^T A^{-1} J} \bigg|_{J=0}} \tag{5}
\]

\[
= \frac{\partial^2}{\partial J_i \partial J_j} \left(e^{\frac{1}{2} J^T A^{-1} J} \right) \bigg|_{J=0} \tag{6}
\]
Working out these derivatives isn’t all that bad, if we do the first few to see how the pattern goes. To make the notation a bit easier, we’ll define the following:

\[\alpha \equiv e^{\frac{1}{2} J^T A^{-1} J} \]
\[a \equiv A^{-1} \]
\[\beta_i \equiv A^{-1}_{ik} J_k = a_{ik} J_k \]
\[\partial_i \equiv \frac{\partial}{\partial J_i} \]

with an implied sum over \(k \) in the definition of \(\beta \). Repeated indices within the same term are always summed in what follows.

Taking the first derivative, we get

\[\partial_k \alpha = \frac{\alpha}{2} \left(a_{kj} J_j + J_i a_{ik} \right) \]
\[= \alpha a_{kj} J_j \]
\[= \alpha \beta_k \]

where the second line follows because \(A \) and therefore \(A^{-1} = a \) are both symmetric matrices. Note that \(J = 0 \) implies \(\beta = 0 \) and \(\alpha = 1 \).

In subsequent derivatives, we’ll need the result

\[\partial_{\ell} \beta_k = \frac{\partial}{\partial J_{\ell}} a_{ik} J_k \]
\[= a_{i\ell} \]

The second derivative is, from 13

\[\partial_{\ell} \partial_k \alpha = \beta_k \partial_{\ell} \alpha + \alpha \partial_{\ell} \beta_k \]
\[= \alpha \beta_k \beta_{\ell} + \alpha a_{\ell k} \]
\[= a_{\ell k} = A_{\ell k}^{-1} \text{ (for } J = 0) \]

Therefore

\[\langle x_{\ell} x_k \rangle = A_{\ell k}^{-1} \]

The third derivative is
\[\partial_m \partial_\ell \partial_k \alpha = (\partial_m \alpha) \beta_k \beta_\ell + \alpha (\partial_m \beta_k) \beta_\ell + \alpha \beta_k (\partial_m \beta_\ell) + (\partial_m \alpha) a_{\ell k} \]
\[(20) \]

\[= \alpha \beta_m \beta_k \beta_\ell + \alpha a_{mk} \beta_\ell + \alpha \beta_k a_{m\ell} + \alpha \beta_m a_{\ell k} \]
\[(21) \]

\[= 0 \text{ (for } J = 0) \]
\[(22) \]

The fourth derivative is

\[\partial_n \partial_m \partial_\ell \partial_k \alpha = \alpha \beta_n \beta_m \beta_k \beta_\ell + \alpha \beta_n a_{mk} \beta_\ell + \alpha \beta_n \beta_k a_{m\ell} + \alpha \beta_m \beta_a a_{\ell k} + \]
\[\alpha a_{mk} a_{\ell n} + \alpha a_{kn} a_{m\ell} + \alpha a_{mn} a_{\ell k} \]
\[(23) \]

\[= a_{mk} a_{\ell n} + a_{kn} a_{m\ell} + a_{mn} a_{\ell k} \text{ (for } J = 0) \]
\[(24) \]

To see the general pattern for the derivative \(\partial_i \partial_j \ldots \partial_k \partial_\ell \) containing \(N \) factors, note that the first term is always \(\alpha \beta_i \beta_j \ldots \beta_k \beta_\ell \), that is, it contains \(\alpha \) multiplied by all \(N \) possible \(\beta_i \)'s. Then there is a set of terms consisting of \(\alpha \) multiplied by \(N - 2 \) \(\beta_i \)'s and one \(a_{ij} \). The number of these terms is equal to the number of unique permutations of the \(N \) indices, allowing for the symmetry of \(a_{ij} \). For example, in the fourth derivative above, there are 3 unique ways of distributing the 4 indices among a product of form \(a_{ij} \beta_k \beta_\ell \), so there are 3 of these terms.

Next there are terms consisting of \(\alpha \) multiplied by \(N - 4 \) \(\beta_i \)'s and 2 \(a_{ij} \)'s. Again, the number of terms is equal to the number of unique permutations of the \(N \) indices among the factors in each term, allowing for the symmetry of \(a_{ij} \). In the fourth derivative, this gives terms containing zero \(\beta_i \)'s and two \(a_{ij} \)'s, and there are 3 unique ways of distributing 4 indices between the two \(a_{ij} \)'s.

The process continues \(n \) times, where \(n \) is determined by the condition \(N - 2n = 0 \) (for even-order derivatives) or 1 (for odd-order derivatives). For odd-order derivatives, all terms contain at least one factor \(\beta_i \), so all these derivatives are zero when \(J = 0 \). For even-order derivatives, we get

\[\langle x_i x_j \ldots x_k x_\ell \rangle = \sum_{W, i < \ell} A_{ab}^{-1} \ldots A_{cd}^{-1} \]
\[(25) \]

where each term in the sum is a product of \(\frac{N}{2} A_{ij}^{-1} \) elements, and the sum is over all unique permutations of the \(N \) indices distributed amongst these elements. This set of permutations is known as a Wick contraction.

For the case \(N = 1 \), \(\langle x \rangle \) reduces to the single-variable case we considered earlier, where we found that

\[\langle x^{2n} \rangle = \frac{(2n - 1)!!}{a^n} \]
\[(26) \]
Since each term in the Wick sum contributes the same amount $\frac{1}{a^n}$ in this case, there are $(2n - 1)!!$ terms in the sum.

With these rules, we can write down the sixth-order expansion ($N = 2n = 6$), for which there are $(2 \times 3 - 1)!! = 15$ terms in the Wick sum:

$$\langle x_i x_j x_k x_\ell x_m x_n \rangle = a_{ij} a_{k\ell} a_{mn} + a_{ij} a_{km} a_{\ell n} + a_{ij} a_{kn} a_{\ell m} +$$
$$a_{ik} a_{j\ell} a_{mn} + a_{ik} a_{jm} a_{\ell n} + a_{ik} a_{jn} a_{\ell m} +$$
$$a_{i\ell} a_{jk} a_{mn} + a_{i\ell} a_{jm} a_{kn} + a_{i\ell} a_{jn} a_{km} +$$
$$a_{im} a_{jk} a_{\ell n} + a_{im} a_{jl} a_{kn} + a_{im} a_{jn} a_{k\ell} +$$
$$a_{in} a_{jk} a_{\ell m} + a_{in} a_{jl} a_{km} + a_{in} a_{jm} a_{k\ell}$$

(27)

The pattern followed pairs the first two indices i and j in a_{ij}, then works out the Wick contraction of the remaining four indices k, ℓ, m, n to produce the first 3 terms. Then pair i with k in a_{ik} and work out the Wick contraction of the other four indices j, ℓ, m, n to get the next 3 terms and so on. From this process we can also derive the number of terms in a Wick sum of order $N = 2n$. For $N = 2$, there is only one permutation. For $N = 4$, we can pair the first index with any of the 3 remaining indices, leaving 2 indices which as we’ve just seen, have only one permutation. Thus for $N = 4$ the number of permutations is $3 \times 1 = 3$. For $N = 6$, the first index can be paired with any of the 5 remaining indices, leaving 4 other indices which can be permuted in 3 ways, so the number of terms is $5 \times 3 \times 1 = 15$ and so on.